RUANG PROYEKTIF KOMPLEKS 〖CP〗^n ADALAH MANIFOLD KOMPLEKS

Denik Agustito, Irham Taufiq, Dafid Slamet Setiana, Riawan Yudi Purwoko

Abstract


The purpose of this paper to determine the complex projective space  as a complex manifold is to calculate the cohomology of the coherent sheaves of . The research method in this paper is to construct an -dimensional complex projective space, namely  and then the n-dimensional complex projective space, namely , is a complex manifold. The result of this research is the -dimensional complex projective space, namely is a complex and compact manifold.


Keywords


complex, manifold, projective

Full Text:

PDF

References


Adachi, T,. Udagawa, S, Maeda, S,. 1995, Circles in a Complex Projective Space, Osaka J. Math.32 (1995), 709-719.

Arapura, D,. 2012,. Algebraic Geometry over the Complex Numbers,. New-York, Springer-Verlag.

Cattani, E., Zein, F.E., Griffiths, P.A., Trang, L.D. (2013). Hodge Theory. Princeton and Oxford: Princeton University Press.

Dugundji, J,. 1966,. Topology,. Michigan,. Allyn and Bacon.

Kasilingam, R,. 2016,. Classification of Smooth Structures on a Homotopy Complex Projective Space,. Proc. Indian Acad. Sci (Math.Sci). Vol. 126, No. 2, May 2016, pp.277-281, Inidian Academy of Sciences.

Movasati, H. & Vilaflor, R. (2020). A Course in Hodge Theory: Periods of Algebraic Cycles. Publisher.

Movasati, H. (2020). A Course in Hodge Theory: With Emphasis on Multiple Integrals. Boston: International Press.

Nicolaescu, L.I. (2018). Lectures on the Geometry of Manifolds. Washington: World Scientific.

Tu, L.W. (1982). An Introduction to Manifolds. New York: Springer.

Voisin, C,. 2002, Hodge Theory and Complex Algebraic Geometry I, Cambridge, Cambridge University Press.




DOI: http://dx.doi.org/10.31941/delta.v9i1.1268

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Delta: Jurnal Ilmiah Pendidikan Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

printed ISSN : 2303-3983

electronic ISSN : 2548-3994